12799 measured reflections

 $R_{\rm int} = 0.035$

5478 independent reflections

5000 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis(4-cyanopyridine)palladium(II) bis(trifluoromethanesulfonate)

Rafael A. Adrian,^a[‡] David M. Gonzalez,^a Edward R. T. Tiekink^{b*} and Judith A. Walmsley^c§

^aDepartment of Chemistry, University of the Incarnate Word, San Antonio, TX 78209, USA, ^bDepartment of Chemistry, University of Malava, 50603 Kuala Lumpur, Malaysia, and ^cDepartment of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA

Correspondence e-mail: edward.tiekink@gmail.com

Received 9 July 2010; accepted 13 July 2010

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.008 Å; R factor = 0.048; wR factor = 0.128; data-to-parameter ratio = 12.4.

The title salt, $[Pd(C_6H_4N_2)_4](CF_3SO_3)_2$, comprises Pd(4cyanopyridine)₄ dications balanced by two trifluoromethanesulfonate anions. The Pd^{II} atom lies in a square-planar geometry defined by four N atoms which form equivalent Pd-N interactions. The 4-cyanopyridine ligands are twisted out of the N₄ plane, forming dihedral angles ranging from 66.5 (2) to 89.9 (2)°. In the crystal packing, columns of edgeto-edge dications define channels in which reside the anions. A range of C-H···N and C-H···O hydrogen-bonding interactions stabilizes the crystal packing.

Related literature

For related palladium(II) complexes with 4-cyanopyridine, see: Kopylovich et al. (2009); Lang et al. (2006); Taher et al. (2006).

[‡] Additional correspondence author, e-mail: adrian@uiwtx.edu. § Additional correspondence author, e-mail: judith.walmsley@utsa.edu.

Experimental

Crystal data

$[Pd(C_6H_4N_2)_4](CF_3O_3S)_2$	$V = 3246.1 (14) \text{ Å}^3$
$M_r = 820.99$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 18.550 (4) Å	$\mu = 0.79 \text{ mm}^{-1}$
b = 9.2993 (19) Å	T = 153 K
c = 20.688 (4) Å	$0.20 \times 0.20 \times 0.20$ mm
$\beta = 114.55 \ (3)^{\circ}$	

Data collection

Rigaku AFC12/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.829, \ \bar{T}_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	442 parameters
$vR(F^2) = 0.128$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$
5478 reflections	$\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Pd-N1	2.027 (4)	Pd-N5	2.029 (4)
Pd-N3	2.031 (4)	Pd-N7	2.027 (4)

Table 2				
Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4-H4···N8 ⁱ	0.95	2.56	3.489 (8)	166
$C5 - H5 \cdot \cdot \cdot O2$	0.95	2.44	3.159 (6)	132
$C7 - H7 \cdot \cdot \cdot O5^{ii}$	0.95	2.52	3.202 (6)	129
C8-H8···N6 ⁱⁱⁱ	0.95	2.53	3.441 (8)	160
C13−H13···O5 ⁱⁱ	0.95	2.33	3.134 (7)	141
C16−H16···N6 ^{iv}	0.95	2.61	3.403 (8)	142
$C22 - H22 \cdot \cdot \cdot O3^{v}$	0.95	2.52	3.170 (7)	126
C23-H23···O2	0.95	2.34	3.163 (7)	145

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, \overline{-z + \frac{3}{2}}$; (ii) x, y - 1, z; (iii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x, -y + 1, -z + 1; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This research was supported by National Institutes of Health grant No. SO6-08194. The authors also appreciate the support of the Chemistry Department at The University of the Incarnate Word.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2223).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Kopylovich, M. N., Lasri, J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 3074-3084.

Lang, H., Taher, D., Walfort, B. & Pritzkow, H. (2006). J. Organomet. Chem. **691**, 3834–3845.

Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Taher, D., Walfort, B. & Lang, H. (2006). Inorg. Chim. Acta, 359, 1899-1906. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, m957-m958 [doi:10.1107/S1600536810027704]

Tetrakis(4-cyanopyridine)palladium(II) bis(trifluoromethanesulfonate)

R. A. Adrian, D. M. Gonzalez, E. R. T. Tiekink and J. A. Walmsley

Comment

While studying the palladium-catalyzed hydration of nitriles, we sought to crystallize palladium(II) complexes with 4-cyanopyridine, similar to those created by Kopylovich *et al.* (2009), Lang *et al.* (2006) and Taher *et al.* (2006). The resulting yellow crystals that formed, (I), were found not to contain any ethylenediamine, but contained a palladium(II) center where the inner coordination sphere is occupied by 4-cyanopyridine ligands.

The molecular structure of (I) comprises a Pd(4-cyanopyridine)₄ dication, Fig. 1, and two trifluoromethanesulfonate anions. The palladium atom lies in a square planar geometry defined by four pyridine-N atoms which form experimentally equivalent Pd–N bond distances, Table 1. The palladium atom lies in the least-squares plane through the N₄ donor set with the r.m.s. deviation for the PdN₄ atoms being 0.021 Å. For steric reasons, each of the 4-cyanopyridine molecules is twisted with respect to the N₄ plane, forming dihedral angles with it of 72.21 (19), 66.5 (2), 80.1 (2), and 89.9 (2) ° for the N1-, N3-, N5-, and N7-pyridine rings, respectively.

In the crystal packing, molecules self-assemble into layers in the *ab* plane *via C*–*H*···N_{cyano} and C–H···O interactions, Table 2. The resulting 2-D array, Fig. 2, can be described as comprising rows of edge-to-edge complex dications that define channels in which reside the anions, Fig. 3.

Experimental

Pd(ethylenediamine)(trifluoromethanesulfonate)₂ was prepared by adding solid Ag(trifluoromethanesulfonate) to an aqueous solution of Pd(ethylenediamine)Cl₂ (0.050 g, 0.21 mmol). After stirring for 1 h, the mixture was filtered to remove AgCl. 4-Cyanopyridine (0.090 g, 0.85 mmol) was added to the Pd(ethylenediamine)(trifluoromethanesulfonate)₂ solution and heated at 323 K for 2 h. The solution was then allowed to evaporate at room temperature, yielding a yellow solid. X-ray diffraction quality crystals were obtained by vapor diffusion of diethyl ether over a CH₃CN solution of the title complex, (I). (0.026 g, 15% yield). IR (cm⁻¹, solid): v(=CH) 3112 (w), 3083(w), 3022(w); v(CN) 2244 (w); vs(CF₃) 1220 (*s*), vs(SO₃) 1028 (*s*). *M*.pt.: 498 K (dec.) with melting at 523 K.

Refinement

The H-atoms were included in the refinement in the riding model approximation (C–H = 0.95 Å) with $U_{iso}(H)$ set to $1.2U_{eq}(\text{carrier atom})$. The maximum and minimum residual electron density peaks of 1.05 and 0.74 e Å⁻³, respectively, were located 0.71 Å and 0.63 Å from the C11 and S1 atoms, respectively.

Figures

Fig. 1. Molecular structure of the cation in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. Supramolecular 2-D array (I) mediated by C–H···N and C–H···O contacts (blue and orange dashed lines, respectively). Colour code: Pd, orange; S, yellow; O, red; N, blue; C, grey; H, green.

Fig. 3. Stacking of layers in (I), highlighting the formation of channels by the dications in which reside the anions. The C–H…N and C–H…O contacts are shown as blue and orange dashed lines, respectively. Colour code: Pd, orange; S, yellow; O, red; N, blue; C, grey; H, green.

Tetrakis(4-cyanopyridine)palladium(II) bis(trifluoromethanesulfonate)

Crystal d	ata
-----------	-----

$[Pd(C_6H_4N_2)_4](CF_3O_3S)_2$	F(000) = 1632
$M_r = 820.99$	$D_{\rm x} = 1.680 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4545 reflections
a = 18.550 (4) Å	$\theta = 2.4 - 26.7^{\circ}$
<i>b</i> = 9.2993 (19) Å	$\mu = 0.79 \text{ mm}^{-1}$
c = 20.688 (4) Å	T = 153 K
$\beta = 114.55 \ (3)^{\circ}$	Block, pale-yellow
$V = 3246.1 (14) \text{ Å}^3$	$0.20\times0.20\times0.20\ mm$
Z = 4	

Data collection

Rigaku AFC12K/SATURN724 diffractometer	5478 independent reflections
Radiation source: fine-focus sealed tube	5000 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -22 \rightarrow 20$
$T_{\min} = 0.829, T_{\max} = 1.000$	$k = -9 \rightarrow 11$
12799 measured reflections	<i>l</i> = −24→22

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.128$	H-atom parameters constrained
<i>S</i> = 1.14	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0534P)^{2} + 6.3187P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5478 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
442 parameters	$\Delta \rho_{max} = 1.05 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.74 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	nic o	r ec	nivalent	isotro	nic dis	nlacement	parameters -	$(Å^2$)
				1001.01			100000000000000000000000000000000000000	1001.01		p	p	(· · ·	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pd	0.254695 (18)	0.02757 (4)	0.766848 (17)	0.02851 (14)
S1	0.39867 (7)	0.39076 (14)	0.77597 (7)	0.0421 (3)
S2	0.11861 (7)	0.66442 (14)	0.77812 (7)	0.0384 (3)
F1	0.3763 (3)	0.3677 (5)	0.6440 (2)	0.0951 (14)
F2	0.4595 (3)	0.5294 (4)	0.7007 (3)	0.0944 (14)
F3	0.4938 (3)	0.3095 (5)	0.7191 (2)	0.0874 (13)
F4	-0.03138 (19)	0.7372 (4)	0.7237 (2)	0.0733 (10)
F5	-0.0103 (2)	0.5195 (4)	0.7061 (3)	0.0954 (15)
F6	0.0144 (2)	0.6830 (5)	0.64715 (19)	0.0856 (12)
01	0.3355 (2)	0.4938 (4)	0.7542 (2)	0.0559 (10)
O2	0.3714 (2)	0.2450 (4)	0.7711 (2)	0.0571 (10)
O3	0.4674 (2)	0.4248 (5)	0.8390 (2)	0.0701 (13)
O4	0.1119 (2)	0.6364 (5)	0.8435 (2)	0.0661 (12)
O5	0.1394 (2)	0.8100 (4)	0.7697 (2)	0.0499 (9)
O6	0.1616 (2)	0.5589 (4)	0.7574 (2)	0.0545 (10)
N1	0.3470 (2)	-0.0809 (4)	0.84066 (18)	0.0300 (8)
N2	0.5954 (3)	-0.3914 (7)	1.0098 (3)	0.0771 (17)
N3	0.2329 (2)	0.1341 (4)	0.84253 (19)	0.0306 (8)

N4	0.1540 (3)	0.4235 (6)	1.0271 (3)	0.0672 (14)
N5	0.1614 (2)	0.1304 (4)	0.69095 (19)	0.0316 (8)
N6	-0.0892 (3)	0.4022 (6)	0.4987 (3)	0.0653 (14)
N7	0.2771 (2)	-0.0774 (4)	0.69126 (19)	0.0318 (8)
N8	0.3503 (3)	-0.3732 (6)	0.5062 (2)	0.0570 (12)
C1	0.3401 (3)	-0.2230 (5)	0.8488 (2)	0.0354 (10)
H1	0.2905	-0.2682	0.8230	0.042*
C2	0.4029 (3)	-0.3051 (5)	0.8936 (2)	0.0392 (11)
H2	0.3966	-0.4052	0.8988	0.047*
C3	0.4752 (3)	-0.2391 (6)	0.9307 (2)	0.0380 (11)
C4	0.4820 (3)	-0.0920 (6)	0.9233 (2)	0.0405 (11)
H4	0.5310	-0.0444	0.9490	0.049*
C5	0.4169 (3)	-0.0165(5)	0.8782 (2)	0.0349 (10)
Н5	0.4215	0.0843	0.8735	0.042*
C6	0.5424 (3)	-0.3230(6)	0.9757 (3)	0.0501 (13)
C7	0.2062 (3)	0.0623 (6)	0.8847 (2)	0.0399 (11)
H7	0.2007	-0.0392	0.8804	0.048*
C8	0.1865 (3)	0.1317 (6)	0.9340 (3)	0.0437 (12)
H8	0.1679	0.0793	0.9634	0.052*
С9	0.1945 (3)	0.2796 (5)	0.9396 (2)	0.0360 (11)
C10	0.2225 (3)	0.3537 (5)	0.8974 (2)	0.0374 (11)
H10	0.2288	0.4552	0.9011	0.045*
C11	0.2414 (3)	0.2758 (5)	0.8491 (2)	0.0364 (11)
H11	0.2610	0.3258	0.8197	0.044*
C12	0.1719 (3)	0.3602 (6)	0.9892 (3)	0.0493 (13)
C13	0.0912 (3)	0.0632 (6)	0.6598 (3)	0.0390 (11)
H13	0.0869	-0.0332	0.6731	0.047*
C14	0.0258 (3)	0.1282 (6)	0.6098 (3)	0.0419 (12)
H14	-0.0230	0.0779	0.5882	0.050*
C15	0.0324 (3)	0.2699 (6)	0.5912 (2)	0.0424 (12)
C16	0.1042(3)	0 3394 (6)	0.6227(3)	0.0460(12)
H16	0.1096	0.4360	0.6105	0.055*
C17	0.1682 (3)	0.2669(5)	0.6723 (2)	0.0406 (11)
H17	0.2179	0.3142	0.6938	0.049*
C18	-0.0355(3)	0.3426 (6)	0.5394(3)	0.0514 (14)
C19	0.2442(3)	-0.2063(5)	0.6675(2)	0.0383(11)
H19	0.2079	-0.2450	0.6845	0.046*
C20	0.2615 (3)	-0.2836(6)	0.6192 (3)	0.0425(12)
H20	0.2377	-0.3746	0.6028	0.051*
C21	0.2377 0.3145(3)	-0.2260(5)	0.5948(2)	0.0370 (11)
C22	0.3479(3)	-0.0935(6)	0.5910(2)	0.0370(11) 0.0453(12)
H22	0.3839	-0.0519	0.6024	0.054*
C23	0 3278 (3)	-0.0227 (6)	0.6675 (3)	0.024
H23	0.3509	0.0684	0.6847	0.051*
C24	0.3344(3)	-0 3078 (6)	0.5450 (3)	0.0462 (13)
C25	0.4345(4)	0.4002(7)	0.7071(4)	0.0596(16)
C26	0.0176(3)	0.6496 (6)	0.7111(3)	0.0548(14)
~=~	0.01/0(0)	0.0120(0)	0., (0)	0.00 10 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd	0.0277 (2)	0.0264 (2)	0.0324 (2)	0.00416 (13)	0.01340 (16)	0.00318 (13)
S1	0.0410 (7)	0.0374 (7)	0.0541 (7)	-0.0029 (6)	0.0259 (6)	-0.0035 (6)
S2	0.0339 (6)	0.0349 (7)	0.0495 (7)	0.0020 (5)	0.0202 (5)	0.0073 (5)
F1	0.120 (4)	0.117 (4)	0.054 (2)	-0.012 (3)	0.042 (2)	-0.002 (2)
F2	0.125 (4)	0.060 (3)	0.141 (4)	-0.020 (2)	0.098 (3)	0.008 (2)
F3	0.105 (3)	0.089 (3)	0.106 (3)	0.034 (3)	0.081 (3)	0.019 (2)
F4	0.0419 (18)	0.072 (3)	0.097 (3)	0.0145 (18)	0.0206 (18)	-0.004 (2)
F5	0.059 (2)	0.055 (2)	0.155 (4)	-0.0209 (19)	0.027 (3)	-0.007 (2)
F6	0.069 (2)	0.119 (4)	0.053 (2)	-0.011 (2)	0.0098 (18)	-0.002 (2)
01	0.051 (2)	0.045 (2)	0.075 (3)	0.0109 (18)	0.029 (2)	-0.0001 (19)
O2	0.072 (3)	0.038 (2)	0.078 (3)	-0.0120 (19)	0.048 (2)	0.0012 (19)
O3	0.045 (2)	0.097 (4)	0.063 (3)	-0.002 (2)	0.017 (2)	-0.026 (3)
O4	0.060 (2)	0.092 (3)	0.060 (2)	0.019 (2)	0.038 (2)	0.026 (2)
O5	0.041 (2)	0.038 (2)	0.066 (2)	-0.0062 (16)	0.0177 (18)	0.0011 (17)
O6	0.048 (2)	0.048 (2)	0.074 (3)	0.0121 (18)	0.032 (2)	0.002 (2)
N1	0.0284 (19)	0.031 (2)	0.0310 (19)	0.0028 (16)	0.0124 (16)	-0.0009 (16)
N2	0.047 (3)	0.080 (4)	0.086 (4)	0.017 (3)	0.009 (3)	0.031 (3)
N3	0.0274 (18)	0.029 (2)	0.0354 (19)	0.0015 (16)	0.0130 (16)	0.0055 (16)
N4	0.080 (4)	0.079 (4)	0.057 (3)	0.001 (3)	0.042 (3)	-0.014 (3)
N5	0.032 (2)	0.029 (2)	0.0340 (19)	0.0043 (16)	0.0146 (16)	0.0028 (16)
N6	0.058 (3)	0.064 (3)	0.058 (3)	0.018 (3)	0.007 (3)	0.010 (3)
N7	0.0269 (19)	0.033 (2)	0.0353 (19)	0.0051 (16)	0.0123 (16)	0.0062 (17)
N8	0.063 (3)	0.065 (3)	0.049 (3)	0.010 (3)	0.030 (2)	-0.005 (2)
C1	0.032 (2)	0.031 (3)	0.041 (2)	-0.001 (2)	0.013 (2)	-0.002 (2)
C2	0.043 (3)	0.031 (3)	0.039 (3)	0.007 (2)	0.013 (2)	0.002 (2)
C3	0.035 (3)	0.045 (3)	0.032 (2)	0.011 (2)	0.012 (2)	0.005 (2)
C4	0.030 (2)	0.051 (3)	0.038 (3)	-0.003 (2)	0.011 (2)	0.000 (2)
C5	0.039 (3)	0.032 (3)	0.036 (2)	-0.001 (2)	0.018 (2)	0.002 (2)
C6	0.037 (3)	0.055 (4)	0.051 (3)	0.008 (3)	0.011 (2)	0.009 (3)
C7	0.043 (3)	0.038 (3)	0.040 (3)	-0.001 (2)	0.019 (2)	0.004 (2)
C8	0.049 (3)	0.048 (3)	0.040 (3)	-0.005 (2)	0.025 (2)	0.000 (2)
C9	0.032 (2)	0.046 (3)	0.029 (2)	0.004 (2)	0.0117 (19)	0.000 (2)
C10	0.040 (3)	0.033 (3)	0.038 (2)	0.006 (2)	0.016 (2)	-0.001 (2)
C11	0.041 (3)	0.032 (3)	0.041 (3)	0.001 (2)	0.021 (2)	0.006 (2)
C12	0.052 (3)	0.057 (4)	0.043 (3)	0.001 (3)	0.024 (3)	-0.003 (3)
C13	0.039 (3)	0.038 (3)	0.043 (3)	0.005 (2)	0.019 (2)	0.008 (2)
C14	0.035 (3)	0.048 (3)	0.043 (3)	0.003 (2)	0.016 (2)	0.005 (2)
C15	0.044 (3)	0.047 (3)	0.036 (2)	0.017 (2)	0.017 (2)	0.003 (2)
C16	0.053 (3)	0.031 (3)	0.044 (3)	0.005 (2)	0.009 (2)	0.006 (2)
C17	0.042 (3)	0.034 (3)	0.039 (3)	0.003 (2)	0.009 (2)	0.001 (2)
C18	0.051 (3)	0.049 (3)	0.046 (3)	0.015 (3)	0.011 (3)	0.002 (3)
C19	0.043 (3)	0.038 (3)	0.042 (3)	-0.007 (2)	0.026 (2)	-0.007 (2)
C20	0.048 (3)	0.036 (3)	0.046 (3)	-0.009 (2)	0.022 (2)	-0.007 (2)
C21	0.036 (2)	0.040 (3)	0.034 (2)	0.010 (2)	0.014 (2)	0.003 (2)

COO	0.048 (2)	0.044(2)	0.055 (2)	-0.005 (2)	0.022(2)	-0.002(2)	
C22	0.046(3)	0.044(3)	0.055(3)	-0.003(2)	0.032(3)	-0.002(2)	
C23	0.040(3)	0.050(3)	0.035(3)	-0.007(2)	0.030(3)	-0.003(2)	
C24	0.049(3)	0.032(3)	0.041(3)	0.008(3)	0.022(2)	0.001(2)	
C25	0.076(4)	0.044(4)	0.077(4)	-0.003(3)	0.050(4)	0.002(3)	
C26	0.047 (3)	0.044 (3)	0.073 (4)	-0.007(3)	0.024 (3)	-0.002 (3)	
Geometric param	neters (Å, °)						
Pd—N1		2.027 (4)	C2	—Н2		0.9500	
Pd—N3		2.031 (4)	C3	—C4		1.388 (7)	
Pd—N5		2.029 (4)	C3	—Сб		1.437 (7)	
Pd—N7		2.027 (4)	C4	—C5		1.373 (7)	
S1—O3		1.430 (4)	C4	—H4		0.9500	
S1—O1		1.434 (4)	C5	—Н5		0.9500	
S1—O2		1.435 (4)	C7	—C8		1.377 (7)	
S1—C25		1.808 (6)	C7	—Н7		0.9500	
S2—O4		1.433 (4)	C8	—С9		1.383 (7)	
S2—O5		1.438 (4)	C8	—H8		0.9500	
S2—O6		1.439 (4)	С9	—C10		1.372 (7)	
S2-C26		1.815 (6)	С9	—C12		1.465 (7)	
F1-C25		1.338 (8)	C1	0—C11		1.392 (6)	
F2—C25		1.313 (7)	C1	0—H10		0.9500	
F3—C25		1.325 (7)	C1	1—H11		0.9500	
F4—C26		1.325 (7)	C1	3—C14		1.366 (7)	
F5—C26		1.304 (7)	C1	3—Н13		0.9500	
F6—C26		1.335 (7)	C1	4—C15		1.393 (7)	
N1—C5		1.344 (6)	C1	4—H14		0.9500	
N1—C1		1.345 (6)	C1	5—C16		1.377 (7)	
N2—C6		1.137 (7)	C1	5—C18		1.439 (7)	
N3—C11		1.327 (6)	C1	6—C17		1.379 (7)	
N3—C7		1.346 (6)	C1	6—H16		0.9500	
N4—C12		1.135 (7)	C1	7—H17		0.9500	
N5-C13		1.343 (6)	C1	9—C20		1.373 (7)	
N5—C17		1.347 (6)	C1	9—H19		0.9500	
N6—C18		1.146 (7)	C2	0—C21		1.385 (7)	
N7—C23		1.330 (6)	C2	0—H20		0.9500	
N7—C19		1.342 (6)	C2	1—C22		1.376 (7)	
N8—C24		1.140 (6)	C2	1—C24		1.447 (7)	
C1—C2		1.379 (6)	C2	2—С23		1.377 (7)	
C1—H1		0.9500	C2	2—Н22		0.9500	
C2—C3		1.380 (7)	C2	3—Н23		0.9500	
N1—Pd—N7		87.80 (14)	C1	0—C9—C12		118.8 (5)	
N1—Pd—N5		178.15 (15)	C8			121.1 (4)	
N7—Pd—N5		90.70 (14)	C9			118.0 (5)	
N1—Pd—N3		92.21 (14)	C9	—С10—Н10		121.0	
N7—Pd—N3		179.53 (15)	C1	1—С10—Н10		121.0	
N5—Pd—N3		89.29 (14)	N3			122.4 (4)	
O3—S1—O1		116.1 (3)	N3	—C11—H11		118.8	
O3—S1—O2		115.4 (3)	C1	0—C11—H11		118.8	

01—S1—O2	113.0 (2)	N4—C12—C9	179.4 (7)
O3—S1—C25	103.2 (3)	N5-C13-C14	122.4 (5)
O1—S1—C25	103.9 (3)	N5—C13—H13	118.8
O2—S1—C25	102.9 (3)	C14—C13—H13	118.8
O4—S2—O5	114.7 (3)	C13—C14—C15	118.5 (5)
O4—S2—O6	115.7 (3)	C13—C14—H14	120.8
O5—S2—O6	113.4 (2)	C15—C14—H14	120.8
O4—S2—C26	103.9 (3)	C16—C15—C14	119.4 (5)
O5—S2—C26	102.8 (2)	C16—C15—C18	120.5 (5)
O6—S2—C26	104.2 (3)	C14—C15—C18	120.1 (5)
C5—N1—C1	119.0 (4)	C15—C16—C17	119.2 (5)
C5—N1—Pd	121.6 (3)	C15—C16—H16	120.4
C1—N1—Pd	119.3 (3)	C17—C16—H16	120.4
C11—N3—C7	119.1 (4)	N5-C17-C16	121.3 (5)
C11—N3—Pd	120.7 (3)	N5-C17-H17	119.4
C7—N3—Pd	120.2 (3)	С16—С17—Н17	119.4
C13—N5—C17	119.2 (4)	N6-C18-C15	179.0 (6)
C13—N5—Pd	119.8 (3)	N7—C19—C20	121.7 (4)
C17—N5—Pd	121.0 (3)	N7—C19—H19	119.1
C23—N7—C19	119.3 (4)	С20—С19—Н19	119.1
C23—N7—Pd	120.2 (3)	C19—C20—C21	118.6 (5)
C19—N7—Pd	120.4 (3)	С19—С20—Н20	120.7
N1—C1—C2	122.0 (4)	C21—C20—H20	120.7
N1—C1—H1	119.0	C22—C21—C20	119.7 (4)
C2—C1—H1	119.0	C22—C21—C24	121.3 (5)
C1—C2—C3	118.8 (5)	C20—C21—C24	119.1 (5)
С1—С2—Н2	120.6	C21—C22—C23	118.3 (5)
С3—С2—Н2	120.6	C21—C22—H22	120.8
C2—C3—C4	119.2 (4)	C23—C22—H22	120.8
C2—C3—C6	120.0 (5)	N7—C23—C22	122.3 (5)
C4—C3—C6	120.8 (5)	N7—C23—H23	118.8
C5—C4—C3	119.0 (5)	С22—С23—Н23	118.8
С5—С4—Н4	120.5	N8—C24—C21	179.4 (6)
С3—С4—Н4	120.5	F2—C25—F3	107.5 (5)
N1—C5—C4	122.0 (5)	F2—C25—F1	106.5 (6)
N1—C5—H5	119.0	F3—C25—F1	108.1 (5)
С4—С5—Н5	119.0	F2—C25—S1	112.5 (4)
N2—C6—C3	178.1 (7)	F3—C25—S1	111.7 (4)
N3—C7—C8	121.9 (5)	F1—C25—S1	110.2 (4)
N3—C7—H7	119.0	F5—C26—F4	107.6 (5)
С8—С7—Н7	119.0	F5—C26—F6	106.6 (5)
С7—С8—С9	118.5 (5)	F4—C26—F6	107.5 (5)
С7—С8—Н8	120.8	F5—C26—S2	112.4 (4)
С9—С8—Н8	120.8	F4—C26—S2	112.2 (4)
C10—C9—C8	120.1 (4)	F6—C26—S2	110.3 (4)
N7—Pd—N1—C5	105.2 (3)	Pd—N5—C13—C14	178.3 (4)
N3—Pd—N1—C5	-74.3 (3)	N5-C13-C14-C15	-0.7 (7)
N7—Pd—N1—C1	-70.1 (3)	C13-C14-C15-C16	0.9 (7)
N3—Pd—N1—C1	110.4 (3)	C13—C14—C15—C18	-179.2 (5)

N1—Pd—N3—C11	115.5 (4)	C14-C15-C16-C17	-0.2 (7)
N5—Pd—N3—C11	-65.6 (4)	C18—C15—C16—C17	179.9 (5)
N1—Pd—N3—C7	-67.5 (3)	C13—N5—C17—C16	0.9 (7)
N5—Pd—N3—C7	111.5 (3)	Pd—N5—C17—C16	-177.5 (4)
N7—Pd—N5—C13	81.3 (3)	C15-C16-C17-N5	-0.7 (8)
N3—Pd—N5—C13	-99.2 (3)	C23—N7—C19—C20	0.1 (7)
N7—Pd—N5—C17	-100.3 (4)	Pd—N7—C19—C20	-176.4 (4)
N3—Pd—N5—C17	79.2 (4)	N7-C19-C20-C21	0.0 (7)
N1—Pd—N7—C23	-88.8 (4)	C19—C20—C21—C22	-0.4 (7)
N5—Pd—N7—C23	92.3 (4)	C19—C20—C21—C24	178.8 (5)
N1—Pd—N7—C19	87.7 (4)	C20—C21—C22—C23	0.7 (7)
N5—Pd—N7—C19	-91.3 (4)	C24—C21—C22—C23	-178.5 (5)
C5—N1—C1—C2	-1.2 (7)	C19—N7—C23—C22	0.2 (7)
Pd—N1—C1—C2	174.3 (3)	Pd—N7—C23—C22	176.7 (4)
N1—C1—C2—C3	-0.5 (7)	C21—C22—C23—N7	-0.6 (8)
C1—C2—C3—C4	1.6 (7)	O3—S1—C25—F2	-62.4 (6)
C1—C2—C3—C6	-177.7 (5)	O1—S1—C25—F2	59.2 (6)
C2—C3—C4—C5	-1.1 (7)	O2—S1—C25—F2	177.3 (5)
C6—C3—C4—C5	178.2 (4)	O3—S1—C25—F3	58.7 (5)
C1—N1—C5—C4	1.7 (7)	O1—S1—C25—F3	-179.7 (4)
Pd—N1—C5—C4	-173.6 (3)	O2—S1—C25—F3	-61.6 (5)
C3—C4—C5—N1	-0.6 (7)	O3—S1—C25—F1	178.8 (4)
C11—N3—C7—C8	0.7 (7)	O1—S1—C25—F1	-59.5 (5)
Pd—N3—C7—C8	-176.3 (4)	O2—S1—C25—F1	58.5 (5)
N3—C7—C8—C9	0.2 (7)	O4—S2—C26—F5	-65.3 (5)
C7—C8—C9—C10	-0.9 (7)	O5—S2—C26—F5	174.8 (5)
C7—C8—C9—C12	177.8 (5)	O6—S2—C26—F5	56.3 (5)
C8—C9—C10—C11	0.6 (7)	O4—S2—C26—F4	56.1 (5)
C12-C9-C10-C11	-178.0 (4)	O5—S2—C26—F4	-63.8 (5)
C7—N3—C11—C10	-1.0 (7)	O6—S2—C26—F4	177.7 (4)
Pd—N3—C11—C10	176.1 (3)	O4—S2—C26—F6	175.9 (4)
C9—C10—C11—N3	0.3 (7)	O5—S2—C26—F6	56.0 (5)
C17—N5—C13—C14	-0.2 (7)	O6—S2—C26—F6	-62.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4····N8 ⁱ	0.95	2.56	3.489 (8)	166
С5—Н5…О2	0.95	2.44	3.159 (6)	132
C7—H7···O5 ⁱⁱ	0.95	2.52	3.202 (6)	129
C8—H8···N6 ⁱⁱⁱ	0.95	2.53	3.441 (8)	160
C13—H13…O5 ⁱⁱ	0.95	2.33	3.134 (7)	141
C16—H16····N6 ^{iv}	0.95	2.61	3.403 (8)	142
C22—H22···O3 ^v	0.95	2.52	3.170 (7)	126
С23—Н23…О2	0.95	2.34	3.163 (7)	145
$(1, \dots, (1, \dots, $	1 (111)	1/2 + 2/2 (;)	1 1.() 11	1/2 12/2

Fig. 1

Fig. 2

